Abstract
We designed and manufactured a pneumatic-driven robotic passive gait training system (PRPGTS), providing the functions of body-weight support, postural support, and gait orthosis for patients who suffer from weakened lower limbs. The PRPGTS was designed as a soft-joint gait training rehabilitation system. The soft joints provide passive safety for patients. The PRPGTS features three subsystems: a pneumatic body weight support system, a pneumatic postural support system, and a pneumatic gait orthosis system. The dynamic behavior of these three subsystems are all involved in the PRPGTS, causing an extremely complicated dynamic behavior; therefore, this paper applies five individual interval type-2 fuzzy sliding controllers (IT2FSC) to compensate for the system uncertainties and disturbances in the PRGTS. The IT2FSCs can provide accurate and correct positional trajectories under passive safety protection. The feasibility of weight reduction and gait training with the PRPGTS using the IT2FSCs is demonstrated with a healthy person, and the experimental results show that the PRPGTS is stable and provides a high-trajectory tracking performance.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献