Uncovering Abnormal Behavior Patterns from Mobility Trajectories

Author:

Wu Hao,Tang Xuehua,Wang Zhongyuan,Wang Nanxi

Abstract

Using personal trajectory information to grasp the spatiotemporal laws of dangerous activities to curb the occurrence of criminal acts is a new opportunity and method for security prevention and control. This paper proposes a novel method to discover abnormal behaviors and judge abnormal behavior patterns using mobility trajectory data. Abnormal behavior trajectory refers to the behavior trajectory whose temporal and spatial characteristics are different from normal behavior, and it is an important clue to discover dangerous behavior. Abnormal patterns are the behavior patterns summarized based on the regular characteristics of criminals’ activities, including wandering, scouting, random walk, and trailing. This paper examines the abnormal behavior patterns based on mobility trajectories. A Long Short-Term Memory Network (LSTM)-based method is used to extract personal trajectory features, and the K-means clustering method is applied to extract abnormal trajectories from the trajectory dataset. Based on the characteristics of different abnormal behaviors, the spatio-temporal feature matching method is used to identify the abnormal patterns based on the filtered abnormal trajectories. Experimental results showed that the trajectory-based abnormal behavior discovery method can realize a rapid discovery of abnormal trajectories and effective judgment of abnormal behavior patterns.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3