Understanding Effects of Competition and Shade Tolerance on Carbon Allocation with a Carbon Balance Model

Author:

Goudiaby VenceslasORCID,Schneider Robert,Brais Suzanne,Raulier Frédéric,Berninger FrankORCID

Abstract

A carbon-balance model based on mechanistic and allometric relationships (CroBas) was used to assess the effects of competition in C allocation in jack pine (Pinus banksiana Lamb.), a shade-intolerant species, and black spruce (Picea mariana (Mill.) B.S.P.), a moderately shade-tolerant species. For both species, model efficiencies ranged from 36 to 99%. The average model bias was lower than 11% and 18% for jack pine and black spruce, respectively. For both jack pine and black spruce, the total tree C increased over the years, with greater increases noted for decreasing competition. When considering a C compartment as a ratio of the total tree C, decreasing competition resulted for both species in decreasing stem C and increasing C in branches and foliage. When considering the amount of C in a given compartment, for jack pine, decreasing competition led to greater C stem, branches, foliage, and roots, whereas, for black spruce, it also increased its stem C but lately shifted at about 20 years, following thinning; thus, the changing C allocation over time results from both “passive plasticity”, reflecting environmentally induced variations in growth, and “ontogenetic plasticity”, referring to variations in the ontogenetic trajectory of a trait. Overall, the C allocation to stem and foliage relative to the total tree C generally decreased as competition decreased, supporting the optimal partitioning theory. These C-allocation patterns were related to the species’ shade tolerance and illustrated how jack pine and black spruce maximize their competitive fitness.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3