Affiliation:
1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2. School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
3. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
Abstract
In the complex environment of orchards, in view of low fruit recognition accuracy, poor real-time and robustness of traditional recognition algorithms, this paper propose an improved fruit recognition algorithm based on deep learning. Firstly, the residual module was assembled with the cross stage parity network (CSP Net) to optimize recognition performance and reduce the computing burden of the network. Secondly, the spatial pyramid pool (SPP) module is integrated into the recognition network of the YOLOv5 to blend the local and global features of the fruit, thus improving the recall rate of the minimum fruit target. Meanwhile, the NMS algorithm was replaced by the Soft NMS algorithm to enhance the ability of identifying overlapped fruits. Finally, a joint loss function was constructed based on focal and CIoU loss to optimize the algorithm, and the recognition accuracy was significantly improved. The test results show that the MAP value of the improved model after dataset training reaches 96.3% in the test set, which is 3.8% higher than the original model. F1 value reaches 91.8%, which is 3.8% higher than the original model. The average detection speed under GPU reaches 27.8 frames/s, which is 5.6 frames/s higher than the original model. Compared with current advanced detection methods such as Faster RCNN and RetinaNet, among others, the test results show that this method has excellent detection accuracy, good robustness and real-time performance, and has important reference value for solving the problem of accurate recognition of fruit in complex environment.
Funder
key research and development projects in Tianjin
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献