Bifurcation and Stability Analysis of a Bolted Joint Rotor System Contains Multi-Discs Subjected to Rub-Impact Effect

Author:

Wen Chuanmei,Li Yuqi,Jin Long,Yang DayongORCID

Abstract

In aero-engines, the rotor systems are frequently designed with multistage discs, in which the discs are fastened together through bolted joints. During operation, rotating machines are susceptible to rotor–stator rubbing faults. Those bolted joints are subjected to friction and impact forces during a rubbing event, leading to a dramatic change in mechanical properties at the contacting interfaces, influencing the rotor dynamics, which have attracted the attention of scholars. In the present work, a mathematical model, which considers the unbalance force, rotor dimensional properties, nonlinear oil-film force and rub-impact effect, is developed to study the bifurcation and stability characteristics of the bolted joint rotor system containing multi-discs subjected to the rub-impact effect. The time-domain waveforms of the system are obtained numerically by using the Runge–Kutta method, and a bifurcation diagram, time domain waveforms, spectrum plots, shaft orbits and Poincaré maps are adopted to reveal the rotor dynamics under the effect of the rub-impact. Additionally, the influences of rubbing position at the multi-discs on rotor dynamic properties are also examined through bifurcation diagrams. The numerical simulation results show that the segments of the rotating speeds for rubbing are wider and more numerous, and the middle disc is subjected to the rub-impact. When the rub-impact position is far away from disc 1, the rubbing force has little effect on the response of disc 1. The corresponding results can help to understand the bifurcation characteristics of a bolted joint rotor system containing multi-discs subjected to the rub-impact effect.

Funder

Natural Science Foundation of Guangxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3