Hindered Settling of Fiber Particles in Viscous Fluids

Author:

Jirout TomášORCID,Jiroutová DitaORCID

Abstract

In the current literature, information can mainly be found about free and hindered settling of isometric particles in Newtonian and non-Newtonian fluids. These conclusions cannot be used to describe the sedimentation of non-isometric particle in non-Newtonian fluids. For this reason, we have carried out systematic experiments and calculated the correlation of the hindered settling velocity of a cloud of non-isometric particles in high-viscosity and pseudoplastic liquid. The experiments were performed in transparent model fluids, namely, glycerine (a Newtonian fluid) and an aqueous solution of carboxylmethylcelulose CMC (a non-Newtonian pseudo-plastic liquid). These fluids have similar rheological properties, for example, the fresh fine-grained cementitious composites HPC/UHPC. The experiments were carried out with steel fibers with a ratio of d/l = 0.3/20. The settling velocity was determined for fiber volumes from 1% to 5%. While it is known from previous studies that for spherical particles the hindered settling velocity is proportional to the porosity of a suspension cloud on exponent 4.8, which was confirmed by our verification experiment, for the studied fiber particles it is proportional to the porosity on exponent 22.1. This great increase in the exponent is an effect of both the shape of the particles and, in particular, a mutual influence that arises from their interweaving and connection in the suspension.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference19 articles.

1. Ultra High Performance Fibre-Reinforced Concretes, Recommandations,2013

2. FIB Model Code for Concrete Structures 2010,2013

3. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composite with Multiple Fine Cracks;Yokota,2008

4. Modeling of High-Strength FRC Structural Elements with Spatially Non-Uniform Fiber Volume Fraction

5. Chemical Engineering. Volume 2: Particle Technology & Separation Processes;Richardson,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3