Author:
Li Luchun,Lian Zhanghua,Zhou Changhong
Abstract
The failure of a 101.6 mm drill pipe was studied by combining experimental testing and finite element simulation. The macro analysis, metallographic structure and energy spectrum, chemical composition and a mechanical property test of the failed drill pipe sample were firstly carried out. Then, a three-dimensional finite element model of drill pipe failure was established based on the experimental results. Finally, the failure mechanism of drill pipe was analyzed and the mitigation measures were put forward. The results showed that solids settling sticking was the direct cause of fracture failure of the drill pipe joint. Due to the violent friction and wear between the drill pipe joint and the settled sand, the large amount of heat generated caused the microstructure of the joint material to undergo phase transformation and the bearing capacity to be reduced. Finally, fracture occurs under tensile and torsional loads.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献