Abstract
The recent outbreak of COVID-19 around the world has caused a global health catastrophe along with economic consequences. As per the World Health Organization (WHO), this devastating crisis can be minimized and controlled if humans wear facemasks in public; however, the prevention of spreading COVID-19 can only be possible only if they are worn properly, covering both the nose and mouth. Nonetheless, in public places or in chaos, a manual check of persons wearing the masks properly or not is a hectic job and can cause panic. For such conditions, an automatic mask-wearing system is desired. Therefore, this study analyzed several deep learning pre-trained networks and classical machine learning algorithms that can automatically detect whether the person wears the facemask or not. For this, 40,000 images are utilized to train and test 9 different models, namely, InceptionV3, EfficientNetB0, EfficientNetB2, DenseNet201, ResNet152, VGG19, convolutional neural network (CNN), support vector machine (SVM), and random forest (RF), to recognize facemasks in images. Besides just detecting the mask, the trained models also detect whether the person is wearing the mask properly (covering nose and mouth), partially (mouth only), or wearing it inappropriately (not covering nose and mouth). Experimental work reveals that InceptionV3 and EfficientNetB2 outperformed all other methods by attaining an overall accuracy of around 98.40% and a precision, recall, and F1-score of 98.30%.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献