Intelligent Facemask Coverage Detector in a World of Chaos

Author:

Waziry SadafORCID,Wardak Ahmad BilalORCID,Rasheed JawadORCID,Shubair Raed M.ORCID,Yahyaoui Amani

Abstract

The recent outbreak of COVID-19 around the world has caused a global health catastrophe along with economic consequences. As per the World Health Organization (WHO), this devastating crisis can be minimized and controlled if humans wear facemasks in public; however, the prevention of spreading COVID-19 can only be possible only if they are worn properly, covering both the nose and mouth. Nonetheless, in public places or in chaos, a manual check of persons wearing the masks properly or not is a hectic job and can cause panic. For such conditions, an automatic mask-wearing system is desired. Therefore, this study analyzed several deep learning pre-trained networks and classical machine learning algorithms that can automatically detect whether the person wears the facemask or not. For this, 40,000 images are utilized to train and test 9 different models, namely, InceptionV3, EfficientNetB0, EfficientNetB2, DenseNet201, ResNet152, VGG19, convolutional neural network (CNN), support vector machine (SVM), and random forest (RF), to recognize facemasks in images. Besides just detecting the mask, the trained models also detect whether the person is wearing the mask properly (covering nose and mouth), partially (mouth only), or wearing it inappropriately (not covering nose and mouth). Experimental work reveals that InceptionV3 and EfficientNetB2 outperformed all other methods by attaining an overall accuracy of around 98.40% and a precision, recall, and F1-score of 98.30%.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3