Simplified Decision-Tree Algorithm to Predict Falls for Community-Dwelling Older Adults

Author:

Makino KeitaroORCID,Lee Sangyoon,Bae Seongryu,Chiba Ippei,Harada Kenji,Katayama OsamuORCID,Tomida KoukiORCID,Morikawa Masanori,Shimada HiroyukiORCID

Abstract

The present study developed a simplified decision-tree algorithm for fall prediction with easily measurable predictors using data from a longitudinal cohort study: 2520 community-dwelling older adults aged 65 years or older participated. Fall history, age, sex, fear of falling, prescribed medication, knee osteoarthritis, lower limb pain, gait speed, and timed up and go test were assessed in the baseline survey as fall predictors. Moreover, recent falls were assessed in the follow-up survey. We created a fall-prediction algorithm using decision-tree analysis (C5.0) that included 14 nodes with six predictors, and the model could stratify the probabilities of fall incidence ranging from 30.4% to 71.9%. Additionally, the decision-tree model outperformed a logistic regression model with respect to the area under the curve (0.70 vs. 0.64), accuracy (0.65 vs. 0.62), sensitivity (0.62 vs. 0.50), positive predictive value (0.66 vs. 0.65), and negative predictive value (0.64 vs. 0.59). Our decision-tree model consists of common and easily measurable fall predictors, and its white-box algorithm can explain the reasons for risk stratification; therefore, it can be implemented in clinical practices. Our findings provide useful information for the early screening of fall risk and the promotion of timely strategies for fall prevention in community and clinical settings.

Funder

Japan Society for the Promotion of Science

Japanese Ministry of Health, Labor, and Welfare

National Center for Geriatrics and Gerontology

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3