A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models

Author:

Zhou Mengde,Liu Wei,Wang Qinqin,Liang Bing,Tang Linlin,Zhang Yang,Cui Xiaochun

Abstract

Active vibration control is the most effective method for stochastic multidimensional vibration in wind tunnel tests, in which vibration monitoring is the core foundation. Vibrations are induced by the disturbances of several complex air flow instabilities under extreme test conditions with high attack angles. Here, a decoupled unified observation method is proposed in order to fully monitor stochastic multidimensional vibration. First, stochastic multidimensional vibration is explained using the Cartesian coordinate system. Then, the multidimensional vibration decoupling of the pitch plane and the yaw plane is realized according to the proposed decoupling design principle of the long cantilever sting. A unified observation method is presented, based on inertial force theory, to observe multidimensional vibration due to acceleration in each decoupling plane. Verification experiments were conducted in lab and a transonic wind tunnel, using an established real-time monitoring system. The results of lab experiments indicate that, in the frequency region of 0–120 Hz, three vibration modes of a selected stochastic vibration can be decoupled and observed through the vibration components in pitch plane and yaw plane. In addition, wind tunnel tests were carried out according to the working conditions (α = −4~10° with γ = 45°) at Ma = 0.6 and Ma = 0.7, respectively. The results show that six vibration modes of two selected stochastic vibrations can be decoupled and observed through the vibration components in pitch plane and yaw plane. The experimental results prove that stochastic vibration can be fully monitored in multiple dimensions through the vibration components in pitch plane and yaw plane using the proposed decoupled unified observation method. Therefore, these results lay the foundation for active vibration control.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3