Introducing State-of-the-Art Deep Learning Technique for Gap-Filling of Eddy Covariance Crop Evapotranspiration Data

Author:

Fine Lior,Richard Antoine,Tanny JosefORCID,Pradalier CedricORCID,Rosa Rafael,Rozenstein Offer

Abstract

Gaps often occur in eddy covariance flux measurements, leading to data loss and necessitating accurate gap-filling. Furthermore, gaps in evapotranspiration (ET) measurements of annual field crops are particularly challenging to fill because crops undergo rapid change over a short season. In this study, an innovative deep learning (DL) gap-filling method was tested on a database comprising six datasets from different crops (cotton, tomato, and wheat). For various gap scenarios, the performance of the method was compared with the common gap-filling technique, marginal distribution sampling (MDS), which is based on lookup tables. Furthermore, a predictor importance analysis was performed to evaluate the importance of the different meteorological inputs in estimating ET. On the half-hourly time scale, the deep learning method showed a significant 13.5% decrease in nRMSE (normalized root mean square error) throughout all datasets and gap durations. A substantially smaller standard deviation of mean nRMSE, compared with marginal distribution sampling, was also observed. On the whole-gap time scale (half a day to six days), average nMBE (normalized mean bias error) was similar to that of MDS, whereas standard deviation was improved. Using only air temperature and relative humidity as input variables provided an RMSE that was significantly smaller than that resulting from the MDS method. These results suggest that the deep learning method developed here is reliable and more consistent than the standard gap-filling method and thereby demonstrates the potential of advanced deep learning techniques for improving dynamic time series modeling.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3