Assessment of Sponge City Flood Control Capacity According to Rainfall Pattern Using a Numerical Model after Muti-Source Validation

Author:

Li HaichaoORCID,Ishidaira HiroshiORCID,Wei Yanqi,Souma Kazuyoshi,Magome Jun

Abstract

Urban floods are a common urban disaster that threaten the economy and development of cities. Sponge cities can improve flood resistance ability and reduce floods by setting low-impact development measures (LID). Evaluating flood reduction benefits is the basic link in the construction of sponge cities. Therefore, it is of great significance to evaluate the benefits of sponge cities from the perspective of different rain patterns. In this study, we investigated the urban runoff of various rainfall patterns in Mianyang city using the Strom Water Management Model (SWMM). We employed 2–100-year return periods and three different temporal rainfall downscaling methods to evaluate rain patterns and simulate urban runoff in Mianyang, with and without the implementation of sponge city measures. After calibration, model performance was validated using multi-source data concerning flood peaks and inter-annual variations in flood magnitude. Notably, the effects of peak rainfall patterns on historical floods were generally greater than the effects of synthetic rainfalls generated by temporal downscaling. Compared to the rainfall patterns of historical flood events, the flood protection capacities of sponge cities can be easily overestimated when using the synthetic rainfall patterns generated by temporal downscaling. Overall, an earlier flood peak was associated with better flood sponge city protection capacity. In this context, the results obtained in this study provide useful reference information about the impact of rainfall pattern on urban flood control by LID, and can be used for sponge city design in other part of China.

Funder

the Support for Pioneering Research Initiated by the Next Generation – the Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3