A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms

Author:

Kubwimana BenjaminORCID,Najafi Hamidreza

Abstract

The current practice with building energy simulation software tools requires the manual entry of a large list of detailed inputs pertaining to the building characteristics, geographical region, schedule of operation, end users, occupancy, control aspects, and more. While these software tools allow the evaluation of the energy consumption of a building with various combinations of building parameters, with the manual information entry and considering the large number of parameters related to building design and operation, global optimization is extremely challenging. In the present paper, a novel approach is developed for the global optimization of building energy models (BEMs) using Python EnergyPlus. A Python-based script is developed to automate the data entry into the building energy modeling tool (EnergyPlus) and numerous possible designs that cover the desired ranges of multiple variables are simulated. The resulting datasets are then used to establish a surrogate BEM using an artificial neural network (ANN) which is optimized through two different approaches, including Bayesian optimization and a genetic algorithm. To demonstrate the proposed approach, a case study is performed for a building on the campus of the Florida Institute of Technology, located in Melbourne, FL, USA. Eight parameters are selected and 200 variations of them are supplied to EnergyPlus, and the produced results from the simulations are used to train an ANN-based surrogate model. The surrogate model achieved a maximum of 90% R2 through hyperparameter tuning. The two optimization approaches, including the genetic algorithm and the Bayesian method, were applied to the surrogate model, and the optimal designs achieved annual energy consumptions of 11.3 MWh and 12.7 MWh, respectively. It was shown that the approach presented bridges between the physics-based building energy models and the strong optimization tools available in Python, which can allow the achievement of global optimization in a computationally efficient fashion.

Funder

College of Engineering and Science of Florida Institute of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. Baldwin, S. (2015). Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities, U.S. Department of Energy.

2. Development of a multicriteria tool for optimizing the renovation of buildings;Chantrelle;Appl. Energy,2011

3. Distributed-elite local search based on a genetic algorithm for bi-objective jobshop scheduling under time-of-use tariffs;Kurniawan;Evol. Intell.,2020

4. A genetic algorithm for minimizing energy consumption in ware-houses;Ene;Energy,2016

5. Getting efficient choices in buildings by using Genetic Algorithms: Assessment & validation;Santos;Open Eng.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3