Phase Change Materials Energy Storage Enhancement Schemes and Implementing the Lattice Boltzmann Method for Simulations: A Review

Author:

Shirbani Milad,Siavashi Majid,Bidabadi Mehdi

Abstract

Utilizing phase change materials (PCMs) is one of the most effective methods of storing thermal energy and is gaining popularity in renewable energy systems. In order to analyze PCM performance, various numerical methods have been deployed to study the transient behaviour during phase changes. PCMs’ low thermal conductivity prevents their use as pure PCMs in industrial applications. There are various efficient methods of enhancing PCM thermal conductivity, which are addressed in this article. On the other hand, the lattice Boltzmann method (LBM) is very inclusive in the numerical simulation of complex fluid flows, thermal transport, and chemical interactions because of its ability to simply represent various complex physical phenomena, suitability for parallel programming, and easy coding and implementation. Many numerical studies have been conducted on PCMs using the LBM. This study aims to review these studies and categorize them in a way so that one may thoroughly understand the LBM’s capabilities in the simulation of PCM-related investigations. First, PCM characteristics and applications are presented, then the LBM implementation in PCM problems is addressed. Afterward, the fabrication and types of PCMs are mentioned. Next, the improvement of thermal energy storage methods of PCMs is stated. Furthermore, governing equations are reviewed. Lastly, the opportunities and challenges of the LBM in PCMs are discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3