Efficiency Improvement of Photovoltaic Panels: A Novel Integration Approach with Cooling Tower

Author:

Abdelsalam EmadORCID,Alnawafah Hamza,Almomani FaresORCID,Mousa Aya,Jamjoum MohammadORCID,Alkasrawi Malek

Abstract

Overheating of photovoltaic (PV) panels decreases their efficiency and lifetime, and subsequently increases the levelized cost of energy (LCOE). Passive PV cooling would enhance the PV operational stability and durability. The cooling tower (CT) technology offers an attractive approach for zero-cost capability. In this work, we developed and customized a CT specific for passive PV cooling. Since the dense downdrafted cooled air gained high velocity, a turbine was installed at the bottom of the CT for power production. At the height’s ambient temperature, the CT cooled the air from 50 °C down to 30 °C. The cooled air at 30 °C has enough capacity to cool the PV panels. This cooling capacity improved the average annual efficiency of the PV panels by 6.83%. The design specifications of the CT have the highest performance, with the maximum radius of PV area of panels that can be cooled at 50 m. Furthermore, the current design could operate during the night for power production with minimum operational cost.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference22 articles.

1. Integrated effect of energy consumption, economic development, and population growth on CO 2 based environmental degradation: A case of transport sector;Mohsin;Environ. Sci. Pollut. Res.,2019

2. City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China;Yan;Nat. Energy,2019

3. Towards an electricity-powered world;Armaroli;Energy Environ. Sci.,2011

4. Quantifying edge and peripheral recombination losses in industrial silicon solar cells;Wong;IEEE Trans. Electron Devices,2015

5. Experimental Analysis of solar panel efficiency with different modes of cooling;Koteswararao;Int. J. Eng. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3