Author:
Wang Wei,Fan Sheming,You Yunxiang,Zhao Cheng,Xu Liqun,Wang Guibiao
Abstract
The DeepCwind floating wind turbine platform has become one of the most successful structures for accommercial floating wind farms, and the stability of it is crucial for survivability. Hence, this paper studies an anti-oscillation device with the purpose of reducing the heave and surge effects of the platform. The influence of various chamfered perforations at different sizes of the anti-heave device on the floating platform was further studied by numerical and experimental methods. Furthermore, through an analysis of the surge and heave of the pedestal with anti-heave devices with different chamfered perforations under different wave heights and wave periods, the effects on the hydrodynamic performance of the pedestal were studied. Physical experiments were conducted on a pedestal with anti-heave devices with chamfered perforations under the working conditions of different wave heights and wave periods to verify the reliability of the numerical simulation. The results show that the anti-heave effect of the anti-oscillation device is obvious under the small wave period and large wave height. Under the working conditions of different wave heights and wave periods, different perforated chamfers have different effects on reducing the oscillation of the pedestal, and its effect does not change linearly with an increasing chamfer. Under most working conditions, the anti-heave effect of the 35° chamfered perforated model was found to be the most obvious.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献