A Hybrid Oil Production Prediction Model Based on Artificial Intelligence Technology

Author:

Kong Xiangming,Liu Yuetian,Xue Liang,Li Guanlin,Zhu Dongdong

Abstract

Oil production prediction plays a significant role in designing programs for hydrocarbon reservoir development, adjusting production operations and making decisions. The prediction accuracy of oil production based on single methods is limited since more and more unconventional reservoirs are being exploited. Artificial intelligence technology and data decomposition are widely implemented in multi-step forecasting strategies. In this study, a hybrid prediction model was proposed based on two-stage decomposition, sample entropy reconstruction and long short-term memory neural network (LSTM) forecasts. The original oil production data were decomposed into several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN); then these IMFs with different sample entropy (SE) values were reconstructed based on subsequence reconstruction rules that determine the appropriate reconstruction numbers and modes. Following that, the highest-frequency reconstructed IMF was preferred to be decomposed again by variational mode decomposition (VMD), and subsequences of the secondary decomposition and the remaining reconstructed IMFs were fed into the corresponding LSTM predictors based on a hybrid architecture for forecasting. Finally, the prediction values of each subseries were integrated to achieve the result. The proposed model makes predictions for the well production rate of the JinLong volcanic reservoir, and comparative experiments show that it has higher forecasting accuracy than other methods, making it recognized as a potential approach for evaluating reservoirs and guiding oilfield management.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

National Major Science and Technology Projects of China

CNPC Major Scientific Research Project

SINOPEC Major Scientific Research Project

Beijing Natural Science Foundation

PetroChina Innovation Foundation

Science Foundation of China University of Petroleum, Beijing

PetroChina perspective fundamental research project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3