A Novel Computer-Vision Approach Assisted by 2D-Wavelet Transform and Locality Sensitive Discriminant Analysis for Concrete Crack Detection

Author:

Gharehbaghi VahidrezaORCID,Noroozinejad Farsangi EhsanORCID,Yang T. Y.,Noori MohammadORCID,Kontoni Denise-Penelope N.ORCID

Abstract

This study proposes FastCrackNet, a computationally efficient crack-detection approach. Instead of a computationally costly convolutional neural network (CNN), this technique uses an effective, fully connected network, which is coupled with a 2D-wavelet image transform for analyzing and a locality sensitive discriminant analysis (LSDA) for reducing the number of features. The algorithm described here is used to detect tiny concrete cracks in two noisy adverse conditions and image shadows. By combining wavelet-based feature extraction, feature reduction, and a rapid classifier based on deep learning, this technique surpasses other image classifiers in terms of speed, performance, and resilience. In order to evaluate the accuracy and speed of FastCrackNet, two prominent pre-trained CNN architectures, namely GoogleNet and Xception, are employed. Findings reveal that FastCrackNet has better speed and accuracy than the other models. This study establishes performance and computational thresholds for classifying photos in difficult conditions. In terms of classification efficiency, FastCrackNet outperformed GoogleNet and the Xception model by more than 60 and 80 times, respectively. Furthermore, FastCrackNet’s dependability was proved by its robustness and stability in the presence of uncertainties produced by network characteristics and input images, such as input image size, batch size, and input image dimensions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3