Dynamic Partition Gaussian Crack Detection Algorithm Based on Projection Curve Distribution

Author:

Xue Dan,Yuan Weiqi

Abstract

When detecting the cracks in the tunnel lining image, due to uneven illumination, there are generally differences in brightness and contrast between the cracked pixels and the surrounding background pixels as well as differences in the widths of the cracked pixels, which bring difficulty in detecting and extracting cracks. Therefore, this paper proposes a dynamic partitioned Gaussian crack detection algorithm based on the projection curve distribution. First, according to the distribution of the image projection curve, the background pixels are dynamically partitioned. Second, a new dynamic partitioned Gaussian (DPG) model was established, and the set rules of partition boundary conditions, partition number, and partition corresponding threshold were defined. Then, the threshold and multi-scale Gaussian factors corresponding to different crack widths were substituted into the Gaussian model to detect cracks. Finally, crack morphology and the breakpoint connection algorithm were combined to complete the crack extraction. The algorithm was tested on the lining gallery captured on the site of the Tang-Ling-Shan Tunnel in Liaoning Province, China. The optimal parameters in the algorithm were estimated through the Recall, Precision, and Time curves. From two aspects of qualitative and quantitative analysis, the experimental results demonstrate that this algorithm could effectively eliminate the effect of uneven illumination on crack detection. After detection, Recall could reach more than 96%, and after extraction, Precision was increased by more than 70%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image-based intelligent detection of typical defects of complex subway tunnel surface;Tunnelling and Underground Space Technology;2023-10

2. Fast Detection Algorithm of Tunnel Surface Cracks Based on Image Processing;2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME);2023-06

3. Recognition of Tunnel Lining Cracks Based on Digital Image Processing;Mathematical Problems in Engineering;2020-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3