A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions

Author:

Choi YejiORCID,Park SujinORCID,Kim Soojin,Kim EunsooORCID,Kim GeonwooORCID

Abstract

In the existing phytoncide-prediction process, solar radiation and photosynthetically active radiation (PAR) are difficult microclimate factors to measure on site. We derived a phytoncide-prediction technique that did not require field measurements. Visual indicators extracted from forest images and statistical analysis were used to determine appropriate positioning for forest environment photography to improve the accuracy of the new phytoncide-prediction formula without using field measurements. Indicators were selected from the Automatic Mountain Meteorology Observation System (AMOS) of the Korea Forest Service to replace on-site measured climate data and the phytoncide-prediction equation was derived using them. Based on regression analyses, we found that forest density, leaf area, and light volume above the horizon could replace solar radiation and PAR. In addition, AMOS data obtained at 2 m altitudes yielded suitable variables to replace microclimate data measured on site. The accuracy of the new equation was highest when the surface area in the image accounted for 25% of the total. The new equation was found to have a higher prediction accuracy (71.1%) compared to that of the previous phytoncide-prediction equation (69.1%), which required direct field measurements. Our results allow the public to calculate and predict phytoncide emissions more easily in the future.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Plant-Emitted Monoterpenes on Anxiety Symptoms: A Propensity-Matched Observational Cohort Study;International Journal of Environmental Research and Public Health;2023-02-04

2. How can plant-enriched natural environments benefit human health: a narrative review of relevant theories;International Journal of Environmental Health Research;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3