Abstract
Numerical time series data are pervasive, originating from sources as diverse as wearable devices, medical equipment, to sensors in industrial plants. In many cases, time series contain interesting information in terms of subsequences that recur in approximate form, so-called motifs. Major open challenges in this area include how one can formalize the interestingness of such motifs and how the most interesting ones can be found. We introduce a novel approach that tackles these issues. We formalize the notion of such subsequence patterns in an intuitive manner and present an information-theoretic approach for quantifying their interestingness with respect to any prior expectation a user may have about the time series. The resulting interestingness measure is thus a subjective measure, enabling a user to find motifs that are truly interesting to them. Although finding the best motif appears computationally intractable, we develop relaxations and a branch-and-bound approach implemented in a constraint programming solver. As shown in experiments on synthetic data and two real-world datasets, this enables us to mine interesting patterns in small or mid-sized time series.
Funder
Fonds Wetenschappelijk Onderzoek
European Research Council
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献