Exergy Analysis of the Heart with a Stenosis in the Arterial Valve

Author:

Brandão Roll Julio,Leone Borges Matheus,Keutenedjian Mady Carlos EduardoORCID,de Oliveira Junior Silvio

Abstract

In the past decade, several articles have proposed the use of an exergy perspective to analyze physiological systems of the human body under different physical conditions. Such a perspective focuses on the exergy transformations and the efficiency of the biological processes. This may aid the medical field in assessments of a patient’s physical health by means of an index (exergy efficiency) based on the quality of the energy conversion in a given process within the human heart. As a follow-up, a model was developed to describe the evolution of the transvalvular pressure gradient in the aortic valve as a function of stenosis severity. This model was created using physiological data from 40 patients available in the literature, as well as 32 operating points from different bileaflet aortic valve prosthesis. A linear regression results in values around 14.0 kPa for the pressure gradient in the most severe case, evolving from 1.0 kPa for a healthy scenario. The thermodynamic model assesses the irreversibilities associated with energy conversion processes related to metabolism: exergy destroyed at the valves, exergy increased in the flow, and the power of the heart. Results indicate that destroyed exergy reaches values of 10 W (almost 10% of total basal metabolic rate of the whole body). Exergy efficiency is 15% for a healthy heart, decreasing as a function of the severity of the stenosis to values lower than 5%.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference42 articles.

1. Energy value and pricing;Rant;Strojniski Vestnik,1955

2. Energy Analysis of Thermal, Chemical, and Metallurgical Processes;Szargut,1988

3. Exergy: Production, Cost and Renewability;Oliveira-Junior,2012

4. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

5. Entropy generation approach to cell systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3