An Image Augmentation Method Based on Limited Samples for Object Tracking Based on Mobile Platform

Author:

Wang ZihaoORCID,Yang Sen,Shi Mengji,Qin Kaiyu

Abstract

This paper proposes an image augmentation model of limited samples on the mobile platform for object tracking. The augmentation method mainly aims at the detection failure caused by the small number of effective samples, jitter of tracking platform, and relative rotation between camera and object in the tracking process. Aiming at the object tracking problem, we first propose to use geometric projection transformation, multi-directional overlay blurring, and random background filling to improve the generalization ability of samples. Then, selecting suitable traditional augmentation methods as the supplements, an image augmentation model with an adjustable probability factor is provided to simulate various kinds of samples to help the detection model carry out more reliable training. Finally, combined with a spatial localization algorithm based on geometric constraints proposed by the author’s previous work, a framework for object tracking with an image augmentation method is proposed. SSD, YOLOv3, YOLOv4, and YOLOx are adopted in the experiment of this paper as the detection models. And a large number of object recognition and object tracking experiments are carried out by combining with common data sets OTB50 and OTB100 as well as the OTMP data set proposed by us for mobile platform. The augmented module proposed in this paper is conducive for the detection model to improve the detection accuracy by at least 10%. Especially for objects with planar characteristics, the affine and projection transformation used in this paper can greatly improve the detection accuracy of the model. Based on the object tracking framework of our augmented model, the RMSE is estimated to be less than 4.21 cm in terms of the actual tracking of indoor objects.

Funder

Science and Technology Department of Sichuan Province

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple Image Augmentations for Enhanced YOLO-based Traffic Sign Detection;2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML);2023-11-03

2. Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model;Computers and Electronics in Agriculture;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3