The Automatic Design of Multimode Resonator Topology with Evolutionary Algorithms

Author:

Stanovov Vladimir V.ORCID,Khodenkov Sergey A.ORCID,Popov Aleksey M.,Kazakovtsev Lev A.ORCID

Abstract

Microwave electromagnetic devices have been used for many applications in tropospheric communication, navigation, radar systems, and measurement. The development of the signal preprocessing units including frequency-selective devices (bandpass filters) determines the reliability and usability of such systems. In wireless sensor network nodes, filters with microstrip resonators are widely used to improve the out-of-band suppression and frequency selectivity. Filters based on multimode microstrip resonators have an order that determines their frequency-selective properties, which is a multiple of the number of resonators. That enables us to reduce the size of systems without deteriorating their selective properties. Various microstrip multimode resonator topologies can be used for both filters and microwave sensors, however, the quality criteria for them may differ. The development of every resonator topology is time consuming. We propose a technique for the automatic generation of the resonator topology with required frequency characteristics based on the use of evolutionary algorithms. The topology is encoded into a set of real valued parameters, which are varied to achieve the desired features. The differential evolution algorithm and the genetic algorithm with simulated binary crossover and polynomial mutation are applied to solve the formulated problem using the dynamic penalties method. The experimental results show that our technique enables us to find microstrip resonator topologies with desired amplitude-frequency characteristics automatically, and manufactured devices demonstrate characteristics very close to the results of the algorithm. The proposed algorithmic approach may be used for automatically exploring the new perspective topologies of resonators used in microwave filters, radar antennas or sensors, in accordance with the defined criteria and constraints.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3