Abstract
Multi-converter piezoelectric harvesters based on mono-axial and bi-axial configurations are proposed. The harvesters exploit two and four piezoelectric converters (PCs) and adopt an impinging spherical steel ball to harvest electrical energy from human motion. When the harvester undergoes a shake, a tilt, or a combination of the two, the ball hits one PC, inducing an impact-based frequency-up conversion. Prototypes of the harvesters have been designed, fabricated, fastened to the wrist of a person by means of a wristband and watchband, and experimentally tested for different motion levels. The PCs of the harvesters have been fed to passive diode-based voltage-doubler rectifiers connected in parallel to a storage capacitor, Cs = 220 nF. By employing the mono-axial harvester, after 8.5 s of consecutive impacts induced by rotations of the wrist, a voltage vcs(t) of 40.2 V across the capacitor was obtained, which corresponded to a stored energy of 178 μJ. By employing the bi-axial harvester, the peak instantaneous power provided by the PCs to an optimal resistive load was 1.58 mW, with an average power of 9.65 μW over 0.7 s. The proposed harvesters are suitable to scavenge electrical energy from low-frequency nonperiodical mechanical movements, such as human motion.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference56 articles.
1. Wearable Technology Market Size, Share & Trends Analysis Report by Product (Wrist-Wear, Eye-Wear & Head-Wear, Foot-Wear, Neck-Wear, Body-Wear), by Application, by Region, and Segment Forecasts, 2020–2027
https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
2. An Adhesive and Corrosion-Resistant Biomarker Sensing Film for Biosmart Wearable Consumer Electronics
3. Wearable device for remote monitoring of transcutaneous tissue oxygenation
4. Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat
5. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献