Fire and Smoke Detection Using Fine-Tuned YOLOv8 and YOLOv7 Deep Models

Author:

Chetoui Mohamed1ORCID,Akhloufi Moulay A.1ORCID

Affiliation:

1. Perception, Robotics, and Intelligent Machines Laboratory (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada

Abstract

Viewed as a significant natural disaster, wildfires present a serious threat to human communities, wildlife, and forest ecosystems. The frequency of wildfire occurrences has increased recently, with the impacts of global warming and human interaction with the environment playing pivotal roles. Addressing this challenge necessitates the ability of firefighters to promptly identify fires based on early signs of smoke, allowing them to intervene and prevent further spread. In this work, we adapted and optimized recent deep learning object detection, namely YOLOv8 and YOLOv7 models, for the detection of smoke and fire. Our approach involved utilizing a dataset comprising over 11,000 images for smoke and fires. The YOLOv8 models successfully identified fire and smoke, achieving a mAP:50 of 92.6%, a precision score of 83.7%, and a recall of 95.2%. The results were compared with a YOLOv6 with large model, Faster-RCNN, and DEtection TRansformer. The obtained scores confirm the potential of the proposed models for wide application and promotion in the fire safety industry.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3