Driving Mechanism of Habitat Quality at Different Grid-Scales in a Metropolitan City

Author:

Hu YonggeORCID,Xu Enkai,Dong NalinORCID,Tian Guohang,Kim Gunwoo,Song Peihao,Ge Shidong,Liu Shidong

Abstract

Urban ecosystem dysfunction, habitat fragmentation, and biodiversity loss caused by rapid urbanization have threatened sustainable urban development. Urban habitat quality is one of the important indicators for assessing the urban ecological environment. Therefore, it is of great practical significance to carry out a study on the driving mechanism of urban habitat quality and integrate the results into urban planning. In this study, taking Zhengzhou, China, as an example, the InVEST model was used to analyze the spatial differentiation characteristics of urban habitat quality and Geodetector software was adopted to explore the driving mechanism of habitat quality at different grid-scales. The results show the following: (1) LUCC, altitude, slope, surface roughness, relief amplitude, population, nighttime light, and NDVI are the dominant factors affecting the spatial differentiation of habitat quality. Among them, the impacts of slope, surface roughness, population, nighttime light, and NDVI on habitat quality are highly sensitive to varying grid-scales. At the grid-scale of 1000 to 1250 m, the impacts of the dominant factors on habitat quality is closer to the mean level of multiple scales. (2) The impact of each factor on the spatial distribution of habitat quality is different, and the difference between most factors has always been significant regardless of the variation of grid-scales. The superimposed impact of two factors on the spatial distribution of habitat quality is greater than the impact of the single factor. (3) Combined with the research results and the local conditions of Zhengzhou, we put forward some directions of habitat protection around adjusting urban land use structure, applying nature-based solutions and establishing a systematic thinking model for multi-level urban habitat sustainability.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3