A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors

Author:

Garcia-Gonzalez DanielORCID,Rivero DanielORCID,Fernandez-Blanco EnriqueORCID,Luaces Miguel R.ORCID

Abstract

In recent years, human activity recognition has become a hot topic inside the scientific community. The reason to be under the spotlight is its direct application in multiple domains, like healthcare or fitness. Additionally, the current worldwide use of smartphones makes it particularly easy to get this kind of data from people in a non-intrusive and cheaper way, without the need for other wearables. In this paper, we introduce our orientation-independent, placement-independent and subject-independent human activity recognition dataset. The information in this dataset is the measurements from the accelerometer, gyroscope, magnetometer, and GPS of the smartphone. Additionally, each measure is associated with one of the four possible registered activities: inactive, active, walking and driving. This work also proposes asupport vector machine (SVM) model to perform some preliminary experiments on the dataset. Considering that this dataset was taken from smartphones in their actual use, unlike other datasets, the development of a good model on such data is an open problem and a challenge for researchers. By doing so, we would be able to close the gap between the model and a real-life application.

Funder

Xunta de Galicia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity;Sensors;2024-01-23

2. Comparative performance of machine learning models for the classification of human gait;Biomedical Physics & Engineering Express;2024-01-04

3. Smartphone-based activity tracking for spine patients: Current technology and future opportunities;World Neurosurgery: X;2024-01

4. Human Activity Recognition: Approaches, Datasets, Applications, and Challenges;Modern Approaches in IoT and Machine Learning for Cyber Security;2023-12-08

5. Multi-Dataset Human Activity Recognition: Leveraging Fusion for Enhanced Performance;2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3