Physi-Sorption of H2 on Pure and Boron–Doped Graphene Monolayers: A Dispersion–Corrected DFT Study

Author:

Nayyar Iffat,Ginovska Bojana,Karkamkar Abhijeet,Gennett ThomasORCID,Autrey ThomasORCID

Abstract

High-surface-area carbons are of interest as potential candidates to store H2 for fuel–cell power applications. Earlier work has been ambiguous and inconclusive on the effect of boron doping on H2 binding energy. Here, we describe a systematic dispersion–corrected density functional theory study to evaluate the effect of boron doping. We observe some enhancement in H2 binding, due to the presence of a defect, such as terminal hydrogen or distortion from planarity, introduced by the inclusion of boron into a graphene ring, which creates hydrogen adsorption sites with slightly increased binding energy. The increase is from −5 kJ/mol H2 for the pure carbon matrix to −7 kJ/mol H2 for the boron–doped system with the boron content of ~7%. The H2 binding sites have little direct interaction with boron. However, the largest enhancement in physi-sorption energy is seen for systems, where H2 is confined between layers at a distance of about 7 Å, where the H2 binding nearly doubles to −11 kJ/mol H2. These findings suggest that interplanar nanoconfinement might be more effective in enhancing H2 binding. Smaller coronene model is shown to be beneficial for understanding the dependence of interaction energy on the structural configurations and preferential H2 binding sites.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3