Modeling Match Performance in Elite Volleyball Players: Importance of Jump Load and Strength Training Characteristics

Author:

de Leeuw Arie-WillemORCID,van Baar Rick,Knobbe ArnoORCID,van der Zwaard StephanORCID

Abstract

In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical load data were obtained by manually logging all physical activities and using wearable sensors. Daily wellness of players was monitored using questionnaires. Match performance was derived from annotated actions by a video scout during matches. We identified conditions of predictor variables that related to attack and pass performance (p < 0.05). Better attack performance is related to heavy weights of lower-body strength training exercises in the preceding four weeks. However, worse attack performance is linked to large variations in weights of full-body strength training exercises, excessively heavy upper-body strength training, low jump heights and small variations in the number of high jumps in the four weeks prior to competition. Lower passing performance was associated with small variations in the number of high jumps in the preceding week and an excessive amount of high jumps performed, on average, in the two weeks prior to competition. Differences in findings with respect to passing and attack performance suggest that elite volleyball players can improve their performance if training schedules are adapted to the position of a player.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3