Cryptophyte and Photosynthetic Picoeukaryote Abundances in the Bransfield Strait during Austral Summer

Author:

Mukhanov Vladimir,Sakhon EvgenyORCID,Polukhin AlexanderORCID,Artemiev Vladimir,Morozov Eugene,Tsai An-Yi

Abstract

A remarkable shift in the species composition and size distribution of the phytoplankton community have been observed in coastal waters along the Antarctic Peninsula over the last three decades. Smaller photoautotrophs such as cryptophytes are becoming more abundant and important for the regional ecosystems. In this study, flow cytometry was used to quantify the smallest phytoplankton in the central Bransfield Strait and explore their distribution across the strait in relation to physical and chemical properties of the two major water masses: the warmer and less saline Transitional Zonal Water with Bellingshausen Sea influence (TBW), and the cold and salty Transitional Zonal Water with Weddell Sea influence (TWW). Pico- and nano-phytoplankton clusters were distinguished and enumerated in the cytograms: photosynthetic picoeukaryotes, cryptophytes (about 9 µm in size), and smaller (3 µm) nanophytoplankton. It was shown that nanophytoplankton developed higher abundances and biomasses in the warmer and less saline TBW. This biotope was characterized by a more diverse community with a pronounced dominance of Cryptophyta in terms of biomass. The results support the hypothesis that increasing melt-water input can potentially support spatial and temporal extent of cryptophytes. The replacement of large diatoms with small cryptophytes leads to a significant shift in trophic processes in favor of the consumers such as salps, which able to graze on smaller prey.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3