Effects of Barrier Stiffness on Debris Flow Dynamic Impact—II: Numerical Simulation

Author:

Huang YuORCID,Jin Xiaoyan,Ji Junji

Abstract

The destructive and impactful forces of debris flow commonly causes local damage to engineering structures. The effect of a deformable barrier on the impact dynamics is important in engineering design. In this study, a flow–structure coupled with Smoothed Particle Hydrodynamics model was presented to investigate the effects of barrier stiffness on the debris impact. A comparison of the results of physical tests and simulation results revealed that the proposed smoothed particle hydrodynamics model effectively reproduces the flow kinematics and time history of the impact force. Even slight deflections of the deformable barrier lead to obvious attenuation of the peak impact pressure. Additionally, deformable barriers with lower stiffness tend to deform more downstream upon loading, shifting the deposited sand toward the active failure mode and generating less static earth pressure. When the debris flow has a higher frontal velocity, the impact force on the barrier is dominated by the dynamic component and there is an appreciable effect of the stiffness of the deformable barrier on load attenuation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3