Multiclass Classification of Visual Electroencephalogram Based on Channel Selection, Minimum Norm Estimation Algorithm, and Deep Network Architectures

Author:

Mwata-Velu Tat’y123ORCID,Zamora Erik1ORCID,Vasquez-Gomez Juan Irving4ORCID,Ruiz-Pinales Jose3ORCID,Sossa Humberto1ORCID

Affiliation:

1. Robotics and Mechatronics Lab, Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC–IPN), Avenida Juan de Dios Bátiz esquina Miguel Othón de Mendizábal Colonia Nueva Industrial, Vallejo CP, Gustavo A. Madero, Mexico City 07738, Mexico

2. Section Électricité, Institut Supérieur Pédagogique Technique de Kinshasa (I.S.P.T.-KIN), Av. de la Science 5, Gombe, Kinshasa 03287, Democratic Republic of the Congo

3. Telematics and Digital Signal Processing Research Groups (CAs), Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico

4. Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz esquina Miguel Othón de Mendizábal Colonia Nueva Industrial, Gustavo A. Madero, Mexico City 07738, Mexico

Abstract

This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain–computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).

Funder

Centro de Investigación en Computación—Insituto Politécnico Nacional

Mexican National Council of Humanities, Science, and Technology CONAHCyT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3