Abstract
Nowadays, the demand for soft-biometric-based devices is increasing rapidly because of the huge use of electronics items such as mobiles, laptops and electronic gadgets in daily life. Recently, the healthcare department also emerged with soft-biometric technology, i.e., face biometrics, because the entire data, i.e., (gender, age, face expression and spoofing) of patients, doctors and other staff in hospitals is managed and forwarded through digital systems to reduce paperwork. This concept makes the relation friendlier between the patient and doctors and makes access to medical reports and treatments easier, anywhere and at any moment of life. In this paper, we proposed a new soft-biometric-based methodology for a secure biometric system because medical information plays an essential role in our life. In the proposed model, 5-layer U-Net-based architecture is used for face detection and Alex-Net-based architecture is used for classification of facial information i.e., age, gender, facial expression and face spoofing, etc. The proposed model outperforms the other state of art methodologies. The proposed methodology is evaluated and verified on six benchmark datasets i.e., NUAA Photograph Imposter Database, CASIA, Adience, The Images of Groups Dataset (IOG), The Extended Cohn-Kanade Dataset CK+ and The Japanese Female Facial Expression (JAFFE) Dataset. The proposed model achieved an accuracy of 94.17% for spoofing, 83.26% for age, 95.31% for gender and 96.9% for facial expression. Overall, the modification made in the proposed model has given better results and it will go a long way in the future to support soft-biometric based applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference63 articles.
1. Face liveness detection under bad illumination conditions;Bruno;Proceedings of the 18th IEEE International Conference on Image Processing,2011
2. Face liveness detection with component dependent descriptor;Yang;Proceedings of the IEEE International Conference on Biometrics (ICB),2013
3. Context-based face anti-spoofing;Jukka;Proceedings of the Sixth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS),2013
4. Deep learning-based face liveness detection in videos;Yaman;Proceedings of the IEEEInternational Artificial Intelligence and Data Processing Symposium (IDAP),2017
5. Face spoofing detection using LDP-TOP;Quoc-Tin;Proceedings of the IEEE International Conference on Image Processing (ICIP),2016
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献