A Comparative Analysis on Blockchain versus Centralized Authentication Architectures for IoT-Enabled Smart Devices in Smart Cities: A Comprehensive Review, Recent Advances, and Future Research Directions

Author:

Khalil UsmanORCID,Malik Owais AhmedORCID,Uddin MueenORCID,Chen Chin-LingORCID

Abstract

Smart devices have become an essential part of the architectures such as the Internet of Things (IoT), Cyber-Physical Systems (CPSs), and Internet of Everything (IoE). In contrast, these architectures constitute a system to realize the concept of smart cities and, ultimately, a smart planet. The adoption of these smart devices expands to different cyber-physical systems in smart city architecture, i.e., smart houses, smart healthcare, smart transportation, smart grid, smart agriculture, etc. The edge of the network connects these smart devices (sensors, aggregators, and actuators) that can operate in the physical environment and collects the data, which is further used to make an informed decision through actuation. Here, the security of these devices is immensely important, specifically from an authentication standpoint, as in the case of unauthenticated/malicious assets, the whole infrastructure would be at stake. We provide an updated review of authentication mechanisms by categorizing centralized and distributed architectures. We discuss the security issues regarding the authentication of these IoT-enabled smart devices. We evaluate and analyze the study of the proposed literature schemes that pose authentication challenges in terms of computational costs, communication overheads, and models applied to attain robustness. Hence, lightweight solutions in managing, maintaining, processing, and storing authentication data of IoT-enabled assets are an urgent need. From an integration perspective, cloud computing has provided strong support. In contrast, decentralized ledger technology, i.e., blockchain, light-weight cryptosystems, and Artificial Intelligence (AI)-based solutions, are the areas with much more to explore. Finally, we discuss the future research challenges, which will eventually help address the ambiguities for improvement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review;Environmental Science and Ecotechnology;2024-05

2. Blockchain en salud: transformando la seguridad y la gestión de datos clínicos;Atención Primaria;2024-05

3. Methodology for the Design and Programming Methods for a Smart Home;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

4. Cyber Resilience and Smart Cities, a Scoping Review;2023 18th Iberian Conference on Information Systems and Technologies (CISTI);2023-06-20

5. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain;The Journal of Supercomputing;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3