Abstract
Managed aquifer recharge using surface or regenerated water plays an important role in the Barcelona Metropolitan Area in increasing storage volume to help operators cope with the runoff variability and unexpected changes in surface water quality that are aggravated by climate change. The specific aim of the research was to develop a non-invasive methodology to improve the planning and design of surface-type artificial recharge infrastructures. To this end, we propose an approach combining direct and indirect exploration techniques such as electrical resistivity tomography (ERT), frequency domain electromagnetics and data from double-ring infiltration tests, trial pits, research boreholes and piezometers. The ERT method has provided much more complete and representative information in a zone where the recharge project works below design infiltration rates. The geometry of the hydrogeological units and the aquifer-aquiclude contact are accurately defined through the models derived from the interpretation of ERT cross-sections in the alluvial aquifer setting. Consequently, prior to the construction of recharge basins, it is highly recommended to conduct the proposed approach in order to identify the highest permeability areas, which are, therefore, the most suitable for aquifer artificial recharge.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献