A Study on Water and Salt Transport, and Balance Analysis in Sand Dune–Wasteland–Lake Systems of Hetao Oases, Upper Reaches of the Yellow River Basin

Author:

Wang Guoshuai,Shi Haibin,Li Xianyue,Yan Jianwen,Miao Qingfeng,Li Zhen,Akae Takeo

Abstract

Desert oases are important parts of maintaining ecohydrology. However, irrigation water diverted from the Yellow River carries a large amount of salt into the desert oases in the Hetao plain. It is of the utmost importance to determine the characteristics of water and salt transport. Research was carried out in the Hetao plain of Inner Mongolia. Three methods, i.e., water-table fluctuation (WTF), soil hydrodynamics, and solute dynamics, were combined to build a water and salt balance model to reveal the relationship of water and salt transport in sand dune–wasteland–lake systems. Results showed that groundwater level had a typical seasonal-fluctuation pattern, and the groundwater transport direction in the sand dune–wasteland–lake system changed during different periods. During the crop-growth period (5 May–27 October), the average evapotranspiration values of the sand dune, wasteland–sand dune junction, and wasteland were 31–42% of the reference evapotranspiration. The water consumption of sand dune was 1.95 times that of the wasteland–sand dune junction, and 1.88 times that of wasteland. Water loss of the lake was 761.25–869.05 mm (5 May–27 October). The lake is facing the risk of drying up. The vertical salt transport of groundwater at the sand-dune site was 1.13 times that at the wasteland–sand dune junction site, and 1.82 times that at the wasteland site. Of the groundwater salt of the sand dune, 54% was accumulated in the groundwater of the wasteland–sand dune junction. Of the groundwater salt of the wasteland–sand dune junction, 53% was accumulated in wasteland groundwater, and the remaining 47% was accumulated in the lake. Salt storage of the 1 m soil layer of the sand dune was 85% that of the wasteland–sand dune junction, and 82% that of the wasteland. Research results provide a theoretical basis for the ecohydrology of the Hetao plain.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3