Regional Variation in Forest Canopy Height and Implications for Koala (Phascolarctos cinereus) Habitat Mapping and Forest Management

Author:

Mitchell Dave L.ORCID,Soto-Berelov MarielaORCID,Jones Simon D.ORCID

Abstract

Previous research has shown that the Koala (Phascolarctos cinereus) prefers larger trees, potentially making this a key factor influencing koala habitat quality. Generally, tree height is considered at regional scales which may overlook variation at patch or local scales. In this study, we aimed to derive a set of parameters to assist in classifying koala habitat in terms of tree height, which can then be used as an overlay for existing habitat maps. To determine canopy height variation within a specific forest community across a broad area in eastern Australia, we used freely available Airborne Laser Scanning (ALS) data and adopted a straightforward approach by extracting maximum-height ALS returns within a total of 288 30 m × 30 m “virtual” ALS plots. Our findings show that while maximum tree heights generally fall within published regional-scale parameters (mean height 33.2 m), they vary significantly between subregions (mean height 28.8–39.0 m), within subregions (e.g., mean height 21.3–29.4 m), and at local scales, the tree heights vary in response to previous land-use (mean height 28.0–34.2 m). A canopy height dataset useful for habitat management needs to recognise and incorporate these variations. To examine how this information might be synthesised into a usable map, we used a wall-to-wall canopy height map derived from ALS to investigate spatial and nonspatial clustering techniques that capture canopy height variability at both intra-subregional (100s of hectares) and local (60 hectare) scales. We found that nonspatial K-medians clustering with three or four height classes is suited to intra-subregional extents because it allows for simultaneous assessment and comparison of multiple forest community polygons. Spatially constrained clustering algorithms are suited to individual polygons, and we recommend the use of the Redcap algorithm because it delineates contiguous height classes recognisable on a map. For habitat management, an overlay combining these height classification approaches as separate attributes would provide the greatest utility at a range of scales. In addition to koala habitat management, canopy height maps could also assist in managing other fauna; identifying forest disturbance, regenerating forest, and old-growth forest; and identifying errors in existing forest maps.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3