Fast Observation Operator for Global Navigation Satellite System Tropospheric Gradients

Author:

Zus Florian1,Thundathil Rohith12,Dick Galina1,Wickert Jens12

Affiliation:

1. GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

2. Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

From the raw measurements at a single Global Navigation Satellite System (GNSS) ground-based station, the Zenith Total Delay (ZTD) and the tropospheric gradient can be estimated. In order to assimilate such data into Numerical Weather Prediction (NWP) models, the observation operator must be developed. Our previously developed tropospheric gradient operator is based on a linear combination of tropospheric delays and, therefore, is difficult to implement into NWP Data Assimilation (DA) systems. In this technical note, we develop a fast observation operator. This observation operator is based on an integral expression which contains the north–south and east–west horizontal gradients of refractivity. We run a numerical weather model (the horizontal resolution is 10 km) and show that for stations located in central Europe and in the warm season, the root-mean-square deviation between the tropospheric gradients calculated by the fast and original approach is about 0.15 mm. This deviation is regarded acceptable for assimilation since the typical root-mean-square deviation between observed and forward modelled tropospheric gradients is about 0.5 mm. We then implement the developed operator in our experimental DA system and test the proposed approach. In particular, we analyze the impact of the assimilation on the refractivity field. The developed tropospheric gradient operator, together with its tangent linear and adjoint version, is freely available (Fortran code) and ready to be implemented into NWP DA systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3