CamoNet: A Target Camouflage Network for Remote Sensing Images Based on Adversarial Attack

Author:

Zhou Yue1ORCID,Jiang Wanghan1,Jiang Xue1,Chen Lin1,Liu Xingzhao1

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 201100, China

Abstract

Object detection algorithms based on convolutional neural networks (CNNs) have achieved remarkable success in remote sensing images (RSIs), such as aircraft and ship detection, which play a vital role in military and civilian fields. However, CNNs are fragile and can be easily fooled. There have been a series of studies on adversarial attacks for image classification in RSIs. However, the existing gradient attack algorithms designed for classification cannot achieve excellent performance when directly applied to object detection, which is an essential task in RSI understanding. Although we can find some works on adversarial attacks for object detection, they are weak in concealment and easily detected by the naked eye. To handle these problems, we propose a target camouflage network for object detection in RSIs, called CamoNet, to deceive CNN-based detectors by adding imperceptible perturbation to the image. In addition, we propose a detection space initialization strategy to maximize the diversity in the detector’s outputs among the generated samples. It can enhance the performance of the gradient attack algorithms in the object detection task. Moreover, a key pixel distillation module is employed, which can further reduce the modified pixels without weakening the concealment effect. Compared with several of the most advanced adversarial attacks, the proposed attack has advantages in terms of both peak signal-to-noise ratio (PSNR) and attack success rate. The transferability of the proposed target camouflage network is evaluated on three dominant detection algorithms (RetinaNet, Faster R-CNN, and RTMDet) with two commonly used remote sensing datasets (i.e., DOTA and DIOR).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3