MuA-SAR Fast Imaging Based on UCFFBP Algorithm with Multi-Level Regional Attention Strategy

Author:

Xu Fanyun1ORCID,Wang Rufei1,Huang Yulin12,Mao Deqing1ORCID,Yang Jianyu1,Zhang Yongchao12,Zhang Yin1ORCID

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Yangtze Delta Region Institute, University of Electronic Science and Technology of China (UESTC), Quzhou 324003, China

Abstract

Multistatic airborne SAR (MuA-SAR) benefits from the ability to flexibly adjust the positions of multiple transmitters and receivers in space, which can shorten the synthetic aperture time to achieve the required resolution. To ensure both imaging efficiency and quality of different system spatial configurations and trajectories, the fast factorized back projection (FFBP) algorithm is proposed. However, if the FFBP algorithm based on polar coordinates is directly applied to the MuA-SAR system, the interpolation in the recursive fusion process will bring the problem of redundant calculations and error accumulation, leading to a sharp decrease in imaging efficiency and quality. In this paper, a unified Cartesian fast factorized back projection (UCFFBP) algorithm with a multi-level regional attention strategy is proposed for MuA-SAR fast imaging. First, a global Cartesian coordinate system (GCCS) is established. Through designing the rotation mapping matrix and phase compensation factor, data from different bistatic radar pairs can be processed coherently and efficiently. In addition, a multi-level regional attention strategy based on maximally stable extremal regions (MSER) is proposed. In the recursive fusion process, only the suspected target regions are paid more attention and segmented for coherent fusion at each fusion level, which further improves efficiency. The proposed UCFFBP algorithm ensures both the quality and efficiency of MuA-SAR imaging. Simulation experiments verified the effectiveness of the proposed algorithm.

Funder

Municipal Government of Quzhou

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3