Comparing Phenology of a Temperate Deciduous Forest Captured by Solar-Induced Fluorescence and Vegetation Indices

Author:

Merrick Trina1ORCID,Bennartz Ralf23,Jorge Maria Luisa S. P.2,Merrick Carli4,Bohlman Stephanie A.5,Silva Carlos Alberto5ORCID,Pau Stephanie6ORCID

Affiliation:

1. US Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Ave., SW, Washington, DC 20375, USA

2. Department of Earth and Environmental Science, Vanderbilt University, 5726 Stevenson Center, Nashville, TN 37232, USA

3. Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W Dayton St., Madison, WI 53705, USA

4. Goddard Space Flight Center, Greenbelt, MD 20771, USA

5. School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL 32610, USA

6. Department of Geography, Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306, USA

Abstract

A shifting phenology in deciduous broadleaf forests (DBFs) can indicate forest health, resilience, and changes in the face of a rapidly changing climate. The availability of satellite-based solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) promises to add to the understanding of the regional-level DBF phenology that has been developed, for instance, using proxies of gross primary productivity (GPP) from the Moderate Imaging Spectroradiometer (MODIS). It is unclear how OCO-2 and MODIS metrics compare in terms of capturing intra-annual variations and benchmarking DBF seasonality, thus necessitating a comparison. In this study, spatiotemporally matched OCO-2 SIF metrics (at footprint level) and corresponding MODIS GPP, normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) products within a temperate DBF were used to compare the phenology captured by the productivity metrics. Additionally, an estimate of the SIF yield (SIFy), derived from OCO-2 SIF measurements, and a MODIS fraction of photosynthetically active radiation (fPAR) were tested. An examination of the trends and correlations showed relatively few qualitative differences among productivity metrics and environmental variables, but it highlighted a lack of seasonal signal in the calculation of SIFy. However, a seasonality analysis quantitatively showed similar seasonal timings and levels of seasonal production in and out of the growing season between SIF and GPP. In contrast, NDVI seasonality was least comparable to that of SIF and GPP, with senescence occurring approximately one month apart. Taken together, we conclude that satellite-based SIF and GPP (and EVI to a smaller degree) provide the most similar measurements of forest function, while NDVI is not sensitive to the same changes. In this regard, phenological metrics calculated with satellite-based SIF, along with those calculated with GPP and EVI from MODIS, can enhance our current understanding of deciduous forest structures and functions and provide additional information over NDVI. We recommend that future studies consider metrics other than NDVI for phenology analyses.

Funder

São Paulo Research Foundation

Vanderbilt University

US Naval Research Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3