Semi-Supervised Urban Change Detection Using Multi-Modal Sentinel-1 SAR and Sentinel-2 MSI Data

Author:

Hafner Sebastian1ORCID,Ban Yifang1ORCID,Nascetti Andrea1ORCID

Affiliation:

1. Division of Geoinformatics, KTH Royal Institute of Technology, Teknikringen 10a, 114 28 Stockholm, Sweden

Abstract

Urbanization is progressing at an unprecedented rate in many places around the world. The Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) missions, combined with deep learning, offer new opportunities to accurately monitor urbanization at a global scale. Although the joint use of SAR and optical data has recently been investigated for urban change detection, existing data fusion methods rely heavily on the availability of sufficient training labels. Meanwhile, change detection methods addressing label scarcity are typically designed for single-sensor optical data. To overcome these limitations, we propose a semi-supervised urban change detection method that exploits unlabeled Sentinel-1 SAR and Sentinel-2 MSI data. Using bitemporal SAR and optical image pairs as inputs, the proposed multi-modal Siamese network predicts urban changes and performs built-up area segmentation for both timestamps. Additionally, we introduce a consistency loss, which penalizes inconsistent built-up area segmentation across sensor modalities on unlabeled data, leading to more robust features. To demonstrate the effectiveness of the proposed method, the SpaceNet 7 dataset, comprising multi-temporal building annotations from rapidly urbanizing areas across the globe, was enriched with Sentinel-1 SAR and Sentinel-2 MSI data. Subsequently, network performance was analyzed under label-scarce conditions by training the network on different fractions of the labeled training set. The proposed method achieved an F1 score of 0.555 when using all available training labels, and produced reasonable change detection results (F1 score of 0.491) even with as little as 10% of the labeled training data. In contrast, multi-modal supervised methods and semi-supervised methods using optical data failed to exceed an F1 score of 0.402 under this condition. Code and data are made publicly available.

Funder

Swedish National Space Agency

Digital Futures

ESA-China Dragon 5 program

EU Horizon 2020 HARMONIA project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Ban, Y., and Yousif, O. (2016). Change detection techniques: A review. Multitemporal Remote Sens., 19–43.

2. Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies;Paolini;Int. J. Remote Sens.,2006

3. Speckle filtering in satellite SAR change detection imagery;Dekker;Int. J. Remote Sens.,1998

4. Change detection techniques;Lu;Int. J. Remote Sens.,2004

5. Novel Piecewise Distance based on Adaptive Region Key-points Extraction for LCCD with VHR Remote Sensing Images;Lv;IEEE Trans. Geosci. Remote Sens.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3