Machine Learning Downscaling of SoilMERGE in the United States Southern Great Plains

Author:

Tobin Kenneth1,Sanchez Aaron1,Esparza Daniela1,Garcia Miguel1,Ganta Deepak2ORCID,Bennett Marvin2

Affiliation:

1. Center for Earth and Environmental Studies, Texas A&M International University, Laredo, TX 78041, USA

2. School of Engineering, Texas A&M International University, Laredo, TX 78041, USA

Abstract

SoilMERGE (SMERGE) is a root-zone soil moisture (RZSM) product that covers the entire continental United States and spans 1978 to 2019. Machine learning techniques, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Gradient Boost (GBoost) downscaled SMERGE to spatial resolutions straddling the field scale domain (100 to 3000 m). Study area was northern Oklahoma and southern Kansas. The coarse resolution of SMERGE (0.125 degree) limits this product’s utility. To validate downscaled results in situ data from four sources were used that included: United States Department of Energy Atmospheric Radiation Measurement (ARM) observatory, United States Climate Reference Network (USCRN), Soil Climate Analysis Network (SCAN), and Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE). In addition, RZSM retrievals from NASA’s Airborne Microwave Observatory of Subcanopy and Surface (AirMOSS) campaign provided a nearly spatially continuous comparison. Three periods were examined: era 1 (2016 to 2019), era 2 (2012 to 2015), and era 3 (2003 to 2007). During eras 1 and 2, RF outperformed XGBoost and GBoost, whereas during era 3 no model dominated. Performance was better during eras 1 and 2 as opposed to the pre-L band era 3. Improvements across all eras, regions, and models realized from downscaling included an increase in correlation from 0.03 to 0.42 and a decrease in ubRMSE from −0.0005 to −0.0118 m3/m3. This study demonstrates the feasibility of SMERGE downscaling opening the prospect for the development of a long-term RZSM dataset at a more desirable field-scale resolution with the potential to support diverse hydrometeorological and agricultural applications.

Funder

National Aeronautics and Space Administration

United States Department of Energy Research Development and Partnership Pilot

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3