Two Mw ≥ 6.5 Earthquakes in Central Pamir Constrained by Satellite SAR Observations

Author:

Wang Shuai1,Song Chuang2ORCID,Xiao Zhuohui3

Affiliation:

1. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China

2. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

3. Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650031, China

Abstract

The Pamir, situated in central Asia, is a result of the ongoing northward advance of the Indian continent, leading to compression of the Asian landmass. While geodetic and seismic data typically indicate that the most significant deformation in Pamir is along its northern boundary, an Mw 7.2 earthquake on 7 December 2015 and an Mw 6.8 earthquake on 23 February 2023 have occurred in the remote interior of Pamir. These two Mw ≥ 6.5 earthquakes, with good observations of satellite synthetic aperture radar data, provide a rare opportunity to gain insights into rupture mechanics and deformation patterns in this challenging-to-reach region. Here, we utilize spaceborne synthetic aperture radar data to determine the seismogenic faults and finite slip models for these two earthquakes. Our results reveal that the 2015 earthquake ruptured a ~88 km long, left-lateral strike-slip fault that dips to northwest. The rupture of the 2015 earthquake extended to the ground surface over a length of ~50 km with a maximum slip of ~3.5 m. In contrast, the 2023 earthquake did not rupture the ground surface, with a maximum slip of ~2.2 m estimated at a depth of ~9 km. Notably, the seismogenic fault of the 2015 earthquake does not align with the primary strand of the Sarez–Karakul fault system (SKFS), and the 2023 earthquake occurred on a previously unmapped fault. The well-determined seismogenic faults for the 2015 and 2023 earthquakes, along with the SKFS and other distributed faults in the region, suggest the existence of a wide shear zone extending from south to north within the central Pamir.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3