Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20

Author:

Peng Bo1,Chen Wei1ORCID,Wang Hengyang2,Hu Xiuqing3ORCID,Tang Hongzhao4,Li Guangchao1,Zhang Fengjiao1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China

2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

3. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

4. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China

Abstract

The acquisition of high-accuracy reflectance in mid-infrared channels is of great significance for the on-orbit cross-calibration of other bands using the mid-infrared band. However, due to the phenomenon that some sensors have a wide range of wavelengths covered by adjacent channels in the mid-infrared band, the traditional method of estimating the mid-infrared reflectivity assumes that the sea surface reflectivity in different mid-infrared bands is equal, which will lead to a large error during calculation. To solve this problem, this study proposes a nonlinear split-window algorithm involving ocean sun glint data to retrieve reflectivity of FY-3D/MERSI-2 channels 20. The results show that the variation range of sea surface reflectivity of channel 20 in the glint area is 10~25%, the mean value of the reflectivity difference obtained by the nonlinear split-window algorithm is 0.27%, and the RMSE is 0.0066. Among the main influencing factors, the atmospheric conditions have the greatest impact, and the effects of the uncertainties in the water vapor content and aerosol optical thickness on the calculation results are 1.16% and 0.34%, respectively. The initial value limits of the mid-infrared sea surface reflectivity also contribute approximately 0.84%, and their contribution to the uncertainty represents one of the main components. This work shows that the nonlinear split-window algorithm can calculate the infrared sea surface reflectivity with high accuracy and can be used as a reference for in-orbit cross-calibration between different bands.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3