Impact of Climate Change and Human Activities to Runoff in the Du River Basin of the Qinling-Daba Mountains, China

Author:

Zhang Xiaoying12,He Yi12ORCID

Affiliation:

1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China

Abstract

The hydrological response to climate change and human activities plays a pivotal role in the field of water resource management within a given basin. This study was conducted with a primary focus on the Du River basin, aiming to assess and quantify the impacts of climate change and human activities on changes in runoff patterns. The study utilized the Budyko framework in conjunction with the Soil and Water Assessment Tool (SWAT) model to project future changes in runoff while also employing statistical tests like the Pettitt and Mann–Kendall tests to identify abrupt shifts and monotonic trends in the data. The results shows that (1) The analysis of runoff data spanning from 1960 to 2016 revealed a significant declining trend (p < 0.05) in annual runoff, with an abrupt change point identified in 1994. The multi-year average runoff depth was determined to be 495 mm. (2) According to the Budyko framework, human activities were found to be the dominant driver behind runoff changes, contributing significantly at 74.42%, with precipitation changes contributing 24.81%. (3) The results obtained through the SWAT model simulation indicate that human activities accounted for 61.76% of the observed runoff changes, whereas climate change played a significant but slightly smaller role, contributing 38.24% to these changes. (4) With constant climate conditions considered, the study predicted that runoff will continue to decrease from 2017 to 2030 due to the influence of ongoing and future human activities. However, this downward trend was found to be statistically insignificant (p > 0.1). These findings provide valuable insights into the quantitative contributions of climate change and human activities to runoff changes in the Du River basin. This information is crucial for decision-makers and water resource managers, as it equips them with the necessary knowledge to develop effective and sustainable strategies for water resource management within this basin.

Funder

Special Funds of the National Natural Science Foundation of China

National Science and Technology Basic Resource Investigation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3