Abstract
Simultaneous measurement of the kinematics of all hand segments is cumbersome due to sensor placement constraints, occlusions, and environmental disturbances. The aim of this study is to reduce the number of sensors required by using kinematic synergies, which are considered the basic building blocks underlying hand motions. Synergies were identified from the public KIN-MUS UJI database (22 subjects, 26 representative daily activities). Ten synergies per subject were extracted as the principal components explaining at least 95% of the total variance of the angles recorded across all tasks. The 220 resulting synergies were clustered, and candidate angles for estimating the remaining angles were obtained from these groups. Different combinations of candidates were tested and the one providing the lowest error was selected, its goodness being evaluated against kinematic data from another dataset (KINE-ADL BE-UJI). Consequently, the original 16 joint angles were reduced to eight: carpometacarpal flexion and abduction of thumb, metacarpophalangeal and interphalangeal flexion of thumb, proximal interphalangeal flexion of index and ring fingers, metacarpophalangeal flexion of ring finger, and palmar arch. Average estimation errors across joints were below 10% of the range of motion of each joint angle for all the activities. Across activities, errors ranged between 3.1% and 16.8%.
Funder
Ministerio de Ciencia, Innovación y Universidades
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献