An Intelligent Load Control-Based Random Access Scheme for Space-Based Internet of Things

Author:

Fei ChangjiangORCID,Jiang Bin,Xu Kun,Wang LeiORCID,Zhao Baokang

Abstract

Random access is one of the most competitive multiple access schemes for future space-based Internet of Things (S-IoT) due to its support for massive connections and grant-free transmission, as well as its ease of implementation. However, firstly, existing random access schemes are highly sensitive to load: once the load exceeds a certain critical value, the throughput will drop sharply due to the increased probability of data collision. Moreover, due to variable satellite coverage and bursty traffic, the network load of S-IoT changes dynamically; therefore, when existing random access schemes are applied directly to the S-IoT environment, the actual throughput is far below the theoretical maximum. Accordingly, this paper proposes an intelligent load control-based random access scheme based on CRDSA++, which is an enhanced version of the contention resolution diversity slotted ALOHA (CRDSA) and extends the CRDSA concept to more than two replicas. The proposed scheme is dubbed load control-based three-replica contention resolution diversity slotted ALOHA (LC-CRDSA3). LC-CRDSA3 actively controls network load. When the load threatens to exceed the critical value, only certain nodes are allowed to send data, and the load is controlled to be near the critical value, thereby effectively improving the throughput. In order to accurately carry out load control, we innovatively propose a maximum likelihood estimation (MLE)-based load estimation algorithm, which estimates the load value of each received frame by making full use of the number of time slots in different states. On this basis, LC-CRDSA3 adopts computational intelligence-based time series forecasting technology to predict the load values of future frames using the historical load values. We evaluated the performance of LC-CRDSA3 through a series of simulation experiments and compared it with CRDSA++. Our experimental results demonstrate that in S-IoT contexts where the load changes dynamically, LC-CRDSA3 can obtain network throughput that is close to the theoretical maximum across a wide load range through accurate load control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. 5G mobile communication convergence protocol architecture and key technologies in satellite internet of things system

2. IoT Applications and Services in Space Information Networks

3. The Internet of Space (IoS): A Future Backbone for the Internet of Things?https://iot.ieee.org/newsletter/march-2016/the-internet-of-space-ios-a-future-backbone-for-the-internet-of-things.html

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3