Enhancing Reliability and Stability of BLE Mesh Networks: A Multipath Optimized AODV Approach

Author:

Ghori Muhammad Rizwan1ORCID,Wan Tat-Chee1ORCID,Sodhy Gian Chand1ORCID,Aljaidi Mohammad2ORCID,Rizwan Amna3ORCID,Sadiq Ali Safaa4ORCID,Kaiwartya Omprakash4ORCID

Affiliation:

1. School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia

2. Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan

3. School of Computing, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan

4. Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK

Abstract

Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3